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XUV Harmonie Enhancement by Magnetic Flelds
Carl James Elliott and Mark Jude Schmitt

Los Alamos National Laboratory, X-1, E531, Los Alamos, Nev. Mexico, USA, 87545

1. Introduction We examine three ways to enhance harmonic sutput [1,2] of an XUV pianar free-electron
laser (FEL) operating in the Compton regime [3]. The first method is to increase the rms static magnetic
field, making it as large as possible. The second is by adding effective magnetic fields at the harmonics,
thereby increasing the coupling to the harmonics. The third is by phase programming; i.e. programming

the magnetic field to introduce jumps in the phase of the electrons as they move through phase space.

The important concept in dealing with harmcnics is the eflective field. When the magnetic field is weak,
the effective field on the fundamental is just the amplitude of the actual magnetic field. But when the field
increases, the axial component of motion of an electron in the magnetic field begins to have a significant
variation from steady motion. This first appears in the form of a sinusoidal variation in the time versus
distance plot with a period that is half a wiggler period. Thus, the motion of an electron that is sinusoidal
in s is not strictly sinusoidal in t, and higher (odd) harmonics are generated by this accelerating electron.
Anclysis of the motion of the electron shows that when it interacts witl. an electromagnetic wave, it behaves
as if the field on the fundamental were reduced, and this reduced field we call the effective field. Likewise,
on the odd harmonics, even though there is nc static field that would give rise to harmonics directly at
low magnetic field, the non-steady s motion generates fields as if there were a finite field, again we call this
field, the effective field at the harmonic. It is well known that a sinusoidal magnetic field generates efloctive
fields at the harmonics that are obtained by multiplying the fundamental magnetic field amplitude by the
difference of two Bessel functions. Here we enhance these non-linear effective fields by the addition of small

amounts of the harmonic fields, to create new values of the effective field.

In addition to these effective fields, we can also enhance the harmonic content by phase programming
the magnetic field. The demonatration of this principle is shown in an example where we hiave achioved early
saturation on the third harmonic, well before Lhe fundamental has saturated. In this case, an inesertion of a
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x phase shift to the third harmonic (7/3 to the - damental) at its saturation peak causes the downward
turning curve to continue its upward course. In this example little effect occurs to the fundamental.

A 1-D model of the harmonic generation process is sufficient to describe these processes. It allows for
both the concept of an effective field and exhibits the phase programming phenomena. Other work has
shown how some two dimensional effects can be incorporated into a 1-D model [4], and the ability makes
the applicability of this model even greater than it would first appear. By a 1-D treatment, we assume that
the phase fronts of the optical field are flat and that they interact with an eleztron beam whose electrons
have no variation in transverse properties. We further assume for the purposes of this paper that the filling
factor [5] is unity, i.e. each unit area of the electron beam radiates into a unit area of the optical beam. This

gives a simple model in which to study these effects.
2. Mathematical Description

The wiggler contains a magnetic field B(Z)é, that is periodic
B(Z) = B(Z + 2x/k,). (1)
This field gives rise Lo a static vector potential A(Z)é, where
B=9x A4, (2)

B(2) = -A'(2). (3)

Conservation of transverse momentum equates the sum of the mechanical momentum m~v, and the field

momentum —eA (MKSA) to the total canonical momentum, P,
Py = myu, — A, (4)

where ¢ is the magnitude of an electron charge, myc? is the total (relativistic) energy of the electron, v, is
the electron velocity in the y direction, and ¢ Is the speed of light. In accordance with our 1-D model, we

take P, = 0. This gives

oy = 20 (%)



where

ay = eA/mec. (6)

When this electron is subjected to the 1-D electric field Eé,, the total energy of the electron can change.

The rate of change of total energy of the electron is obtained by dotting the Lorents force equation with v

2
dmely __ Gu(kuZ) o (1)
dt v v

This equation is averaged over a wiggler period where tue periodic variations in the phase ¢ give rise to the

effective fields [1,2] in the usual way, and we obtain following that notation [1]

dy K . exp(sig)
I:—CRZ'Z—'&—"—, (8)

where for simplicity we have taken £; to be the scaled harmonic field component, i.e.

E, = (mc?/e) z Erexplil(k,Z — w,t)). (9)
At high 7 these effective fields are given by a generalisation of the expression reported in [1],

Ki = 2 (ay exp|—sw,Tc(Z,7) — slky Z)) (10)

where T, is the periodic part of the time it takes a particle to reach location Z. The angle brackets indicate

an average over one wiggler period. Here when a, is a wesk cosine field of amplitude a,, K; is normalised

to have X, = a,. Now T, is given in terms of T by

dT 1
E:rﬂua—val (11)

where v is the magnitude of the velocity. At large 4 vulues v, is s.uall compared to v and we obtain

dT 1+ by %ad (ku 2)
E ~N v ) (12)

and, by subtracting off the linear part, -ve obtain

To(Z) = T(Z) - (ku/27)T(27/ky)Z. (13)
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We are looking for an algorithm that is simple computationally. Such an alogrithm can be generated by

using scaled variables. We transform to the dimensionless variables

r=w,T, (14)
1. =w,T., (15)
£=k,2Z, (16)
_k,<ald(ky2) > <al > L af
¢= 4lky,y? = 21+ <a? >]  4+2) 7 a?’ (17)
and
a(z) = au(z)/ < o (2) >1/3, (18)

In eq.(17) we have written the expression for £ with the Fourier components a; of a,,. Using dimensionless

variables and integrating, eq.(12) becomes
r(z) = E‘:'L';s +216D(z), (19)
where
D(x) = /0 " a(x)ds. (20)
We can then compute
To(8) = r(s) - 7(27)s/(27), (21)
which when combined with eq.(19) gives

to(a) = 21¢[D(s) — D(2x)s/(2r)). (22)

Combining eq..(10) and (13)-(22), we cbtain

Ki=\/7 feze (a(s) exp{~—sl[26D(s) + 5 — 26D (2r)£/(2n)]}) . (23)

In order to use the equations in a computer code, it is convenient to have flexibility in the input. This is
accomplished by inputing a magnetic field profile, whose absolute magnitude is arbitrary. This magnetic
fleld, 5(x) integrates to the unscaled vector potential ay(s). The integral ¢f the square of this latter quantity
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we refer to as Do(z), and it is the unscaled version of D(z). The root-mean aquared average of ap is just

the square root of, the terminal value of Dy divided by the terminal ordinate. We then have the following

quantities
ag(2) = -b(2), (24)
Dy (z) = aj(2) (25),
a = 2/ Dy(27), (26)
a(z) = Vaao(z), (27)
and
D(z) = aDo(s). (28)

With these expresasions, we can integrate to get K; as

ar
Ki(€) = %/O d

This expression for K; depends only on the unnormalized profile b(s) defined from O to 2x, and the parameter

L ao(s) exp{-sl[2a¢ Dola) + (1 - 26)s]). (29)

€ a measure of the strength of the rms magnetic field.

In addition to the eflective field K, it is also of interest tu introduce the zoupling efficiency k; where

() = g s = Kiley L5 (30)

This definition for k; is normalised with unity modulus for weak sinusoidal magnetic fields.
A. The Enhancement Schemes

3.1. The rma Field

The first enhancement scheme is to increase the rms magnetic field. The rms magnetic field is o direct
measure of the { parameter defined in eq.(17), and vice verea. Thus, as we increase & we incrense the rms
field and a resulting change occurs to the effective fleld on the I'th harmonic that depende on the magnetic
field. In fig.(1) we show the effective filed plotted against ¢ for a pure sinusoidal field. Here the coupli.g



efficiency is well known and ki = [Ji1-1)/2)(I§) = J(1+1)72(1€)| for the I’th harmonic, and this combined with
¢q.(30) gives the effective field plotted in fig.(1). This graph illustrates that a good way to increase the
effective field is to increase the rms field or £. There are, however, two caveats. The first is that there are
physical limite as to how big £ can be made because remanent fields of permanent magnetics are limited.
The second is that as £ increases, the resonant cordition changes. In particular, if we have a third harmonic

field at £ = 0.25, it is at a wavelength that is 2/3 rather than 1/3 of the £ = 0 fundamental.

3.2. Distorting the Sinusosdal Fueld

The second enhancement scheme is to add higher harmonic static magnetic fields. Another way of
looking at this approach is to consider general periodic magnetic fields, not restricted to pure sinusoids. A
special limiting case of eq..(17),(23), and (30) as £ — O is important in understanding the behavior of the
coupling coeflicients. In this limit

ki — -;/?2_ 0" dza(z) exp(—slz), (31)
and for very small fields, a linear relationship exists between the magnetic field and the effective iield. Fq.(31)
states that the coupling efficiency of the I'th harmonic at small fields is just the /2 times the complex Fourier
transform of the {'th component of the vector potential normalised to unity rms value.

This small £ formula is often useful. In particular, we have done & calculation shown in fig.(2) where
the magnetic field is the difference of two delta functione. The first delta function was placed at » = 7/2
and the negative delta function at s = 3x/2. In the calculatiin, each delta function was approximated by
a top-hat distribution that was 5% of the 2x interval. Here we see that the coupling efliciency is nearly
independent of £. Note, however, the reduction from unity of the fundamental coupling coefficient at £ = 0.
This reduction can be overcome by raising the overall rms value of the field as explained in fig.(1). However,
if one regards the rms vector potential generated by the harmonic as restricting the vector potential on the
fundamental, then this is, ns we will discuss later, & difficulty that one can regard as being as serious as a
reflection coefficient degraded by the coupling efiency of the fundamental.

Now we show a calculation in fig.(3) of the coupling efficiency where we have raised the efficiency of
the third harmonic by considering a maguetic field where 5 « sin(x) — 38in(3s). Note that in this case
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there are important variations with £. At & = 0 the two coupling terms are equal as we expect from the
Fourier transform rule applied to the vector potential. Remember, however, that the sum cf squares of the
coupling efficiencies add to unity at £ = 0 and, therefore, both coupling efficiencies are reduced to 1/\/5
Again we are faced with the question of whether we can raise the rms magnetic field to compensate for this
effect. Alternately we can ask. Can we add an arbitrary amount of the third harmonic without decreasing
the fundamental? Even if we can, we are faced with the wavelength shift problem which depends on the rms

field that is increasing as the third harmonic is added.

We now come to the question of the constraints on the magnetic fields. From eq.(8) we can see that a
lower effective static magnetic field on the fundamental, lowers the energy loss to the electrons and decreases
the gain. This decrease in gain could be made up by an increase in the reflection coefficients of the mirrors.
The obtaining of good reflection coefficients on mirrors is then seen to be of nearly equivalent importance
as achieving a good effective field on the fundamental. Thus, we do not want the coupling efficiency on
the fundamental to drop by something on the order of 10%, because achieving 10% more reflectivity on the
mirrors is a large chore. Of course, if we can increase the rms magnetic field, we will do so. To enhance the

genzration of higher harmonics in this study, we adopt the following criteria

8wy < 0.3ay1,

and

Owbd S 0.3(‘.,;\.

In fig..(4)-(8) we show the variation of the coupling sfficiency with the ratios of the third to first harmonic
vector potential and the fifth to first harmonic vaclor potential. In these calculations, the effective field is
plotted and with a,; = 1.12 these are very nearly the cou;)ling efficiencies a2 defined above. The largest
values of the effective field divided by thoee obtained from & pure sinusoidal calculation (ay3 = ayz = 0) are

tabulated selow



Harmonic Field Power

3rd 1.3 1.8
5th 1.8 3.2
7th 3.7 14.

19th 62. 4x10°

In the case of the 19th harmonic, where we have very large enhancements over the sinusoidal case, we
are particularly concerned about the effect of non-uniform magnetic fields and the alignment of those fields.
These phase errors will set a limit to the highest harmonic that can be usefully obtained by these techniques,
and the nineteenth harmonic may be precluded therby.

One important feature of these curves is the interaction between the 3rd and 5th harmonic fields on the
7th and 19th harmonic plots, fig.(5) and (6). The fields are strongly interacting with each other. On the
19th harmonic, a stronger coupling efficiency may be obtained by simply adding a 19th harmonic component
to the magnetic field, bnt these plots show that such measures may not be necessary. Indeed, it may turn

out to be easier to manufacture the lower harmonics than the higher.

3.3. Phase Programming

The third way to obtain higher harmeonic output is by phase programming. By phase programming we
mean altering the uniformity of the wiggler so as to introduce local jumps in the electron phase. In principle,
these jumps could be continuous, as would occur for a tapered wiggler, for instance. Here we consider the
effect of one such jump to illustrate that benefits exist from phase programming. From eq.(8) we see that the
average energy of a group of electrons, < 7 >, depends on the product of < exp(sig)/y > and &. If < v >
is dropping due to £, it follows that & jump of x in the phase l$ will cause that part of < 4 > to increase.
This phase jump is just x/l, and as | gets large, the effect on the fundamental diminishes. Here we report
a calculation having a high intensity that shows the promise of this technique. The calculation was done at
ke = 0.76, and in the units reported in [1); the dimensionless density was 3.12 x 10~%; the dimensionless



fieid was 2.52 x 10™%; the Lorents factor, , was 41.6; and an energy spread of 2.2% was used. In fig.(7) we
show the final phase space of the electrons in the case run without the phase jump. In fig.(8) we see the
magnitude of the fundamental field plotted as a function of time through the wiggler in dimensionless units.
The fundamental has just reached its peak value. In fig.(9), we see the third harmonic has reached its peak
and is being absorbed in the last half of the wiggler. When we introduce the phase shift of x/3 we see in
fig.(10) that the fundamental is altered only slightly. The third harmonic, in fig.(11), however, no longer is
absorbed and it continues to rise to a value slightly under a factor of two of its previous value. This increase

corresponds to a factor of four in power.
4. Conclusion

We have shown that there are three techiques that can be used to enhance the power on XUV harmonics.
The first of these is to increase the rms magnetic field to as large a value as possible. The second, is to
introduce distortions to the pure sinusoidal magnetic field, thereby enhancing the coupling coefficients for
the harmonics. The enhancement process is non-linear and we have shown that addition of third and fifth
harmonics produce substantial coupling to the nineteenth harmonic. Enhancements at a,; = 1.12 range
from 1.6 to 4000. The enhancement on the nineteenth harmonic,however, may not all be realized because
of phase errors. The third enhancement scheme is phase programming, and the case shown suggests that
factors of four in power may be acheived on the third harmonic. By a combination of the three techniques,

we expect order of magnitude enhancements of the harmonics.

This work was performed under the auspices of the U.S. Dept. of Energy, supported in part by the
Advarced Energy Projects Div, of the Office of Basic Sciences.
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Figure Captions

1 . Magnitudes of effective fields for the 1st, 3rd, 5th,... 13th harmonic, highest to lowest, respectively for
a pure sinusoidal magnetic field.

2 . Magnitude of coupling efficiencies for the 1at, 3rd, ...13th harmcnic with a positive deltafunction mag-
netic field at z = x/2 and a negative deltafunctior at z = 3x/2. T) ese deltafunction. are approximated
by fat-topped distributions that are each x/10 wide. As before, the lower the harmonic, the higher the
efficiency.

3 . Magnitude of coupling efficiencies for the lst, 3rd,...13th harmonic with b = ain{z) — 3sin(32z). The
curve markers are as before.

4 . Effective field for the fifth harmonic with a,; = 1.12, as a function of the harmonic ratios a,3/a64;
and a,5/ayy. When these harmonic ratios are sero, Ky = 0.0898.

5 . Effective Geld for the seventh harmonic. When the harmonic ratios are séro, K; = 0.0378.

6 . Effective field for the 19th harmonic. When the harmonic ritios are se o, K, = 0.00037.

7 . Phase space plot without the phase jump.

8 . Fundamental field magnitude versus time through the wiggler when no phase jump is introduced.

9 . Third harmonic field magnitude versus tiem through wiggler when no phase jump is introduced.

1 0. Same as fig.(8) but with the phase jump. Little alteration occurs on this fundamental.

1 1. Same as fig.(9) but with the phase jump. Here the field magnitude almost doubles.
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